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Abstract This paper presents a mixed model of inheri- 
tance with a finite number of polygenic loci. This model 
leads to a likelihood that can be calculated using effi- 
cient algorithms developed for oligogenic models. For 
comparison, likelihood profiles were obtained for the 
finite polygenic mixed model, the usual mixed model, 
with exact and approximate calculations, and for a class 
D regressive model. The profiles for the finite polygenic 
mixed model were closest to the profiles for the usual 
mixed model with exact calculations. 

Key words Mixed model inheritance �9 Likelihood 

Introduction 

Maximum likelihood is a powerful method for testing 
hypotheses and estimating parameters. Thus, the devel- 
opment of fast algorithms for calculating likelihoods for 
pedigree data has been an important area of research in 
genetics. 

When a trait is influenced by a few loci, inheritance of 
this trait is said to be oligogenic. Under oligogenic 
inheritance, the phenotypic values of pedigree members 
are assumed to be conditionally independent, given the 
genotypes of these pedigree members. Further, the geno- 
type of an individual is conditionally independent of the 
genotypes of all ancestors and sibs, given the genotypes 
of the parents. Because of these properties of the pheno- 
typic and genotypic distributions under oligogenic in- 
heritance, it has been possible to develop fast algorithms 
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to calculate the likelihood (Elston and Stewart 1971; 
Lange and Elston 1975; Cannings et al. 1978; Lange and 
Boehnke 1983; Goradia et al. 1992). 

When a trait is influenced by a large number of loci, 
each with a small effect, inheritance is said to be poly- 
genic. The genotypic value of polygenic traits is often 
assumed to have a normal distribution (Fisher 1918; 
Elston and Stewart 1971; Bulmer 1980). Under this 
assumption, algorithms used for oligogenic inheritance 
can be adapted to calculate the likelihood (Elston and 
Stewart 1971; Elston et al. 1992). Also, by assuming a 
finite number of polygenic loci, the likelihood can be 
calculated by direct application of oligogenic algorithms 
(Thompson and Skolnick 1977). Further, under the 
assumption of normality, the likelihood can be cal- 
culated using Henderson's mixed model equations for 
very large and complex pedigrees (Henderson 1984; 
Meyer 1989). 

Calculation of the likelihood has also been discussed 
for traits influenced by both a single major locus with a 
large effect and a normally distributed polygenic com- 
ponent (Elston and Stewart 1971; Morton and Mac- 
Lean 1974). These traits are said to have mixed major 
gene and polygenic inheritance (Morton and MacLean 
1974; Elston 1990). From here on, this model of inheri- 
tance will be referred to as the mixed model of inheri- 
tance, or simply the mixed model, which should not be 
confused with the mixed linear model. 

Under the mixed model, the phenotypic values of 
pedigree members cannot be assumed to be conditional- 
ly independent, given only the major genotypes of these 
pedigree members, because the phenotypic value is also 
influenced by the polygenic loci. Thus, for this formula- 
tion of the mixed model, fast algorithms to calculate the 
exact pedigree likelihood do not exist (Elston 1990; 
Bonney 1992). 

The objective of this paper is to present an alternative 
formulation of the mixed model with a finite number of 
polygenic loci, leading to a likelihood that can be com- 
puted using fast algorithms that have been developed for 
oligogenic traits. Furthermore, certain aspects of the 
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resulting model may be more realistic in some practical 
situations. 

An alternative formulation of the mixed model 

In most statistical models, the assumption of a normal 
distribution is mathematically convenient. In the statis- 
tical analysis of quantitative traits, the assumption of 
normality for the genotypic value has been justified on 
the basis of the trait being controlled by a large number 
of polygenic loci, each with a small effect (Fisher 1918; 
Elston and Stewart 1971; Bulmer 1980). However, the 
assumption of normality for the polygenic component of 
the genotypic value in the usual mixed model does not 
result in a likelihood that is easy to compute. To under- 
stand better this difficulty in computing the likelihood 
for the usual mixed model of inheritance, it is instructive 
to consider first computing the likelihood for an 
oligogenic model. 

The probability density of the phenotypic values, 
expressed as a function of the unknown parameters of 
the density, is the likelihood of a pedigree. Under 
oligogenic inheritance, phenotypic values are assumed 
to be conditionally independent, given the genotypes. 
Thus, the conditional density of the phenotypic values 
given the genotypes can be written as 

Pr(yl g) = I~I Pr(y,I gz), (1) 
i = 1  

where y is the vector of n phenotypic values, g is the 
vector of n genotypes for the pedigree members, and 
Pr(yilg~) is the penetrance function or the conditional 
density of the phenotypic value given the genotype. 
Under Mendelian inheritance, the probability of the 
genotypes can be written as 

n l  

Pr(g) = 1-[ Pr(gi) Pr(gilgm, gf), (2) 
i = 1  i = n l + l  

where pedigree members i through n 1 are founders and 
the rest are non-founders, Pr(g~) is the population fre- 
quency of genotype g~, and Pr(gilgm, gs) is the transition 
probability or the conditional probability that a child 
will have genotype gi given the parents have genotypes 
gm and g r (Elston and Stewart 1971; Bonney 1984). Now 
the likelihood of the pedigree can be written as 

Pr(y) = E E 2  f i  Pr(yilgi) 
gl g~ g~ i= l  

nl 

x YIPr(gi) I~I Pr(gilgm, ys). (3) 
i = 1  i = n l + l  

The summations in Eq. 3 are over the genotypes. For 
founders, let f(gi) = Pr(yilgi)Pr(gi), and for non-found- 
ers, let h(gi, gm, gz)=Pr(yilgi)Pr(g~lgm, gs). Then, the 

likelihood can be written as 

Pr(y)=~,~ , ' "~ . f i f (g i )  f i  h(gi, gm, gy ). (4) 
gl gz g . i= l  i = n ~ + l  

If the summations are over m genotypes, the number of 
calculations required to compute the likelihood as in- 
dicated by Eq. 4 is proportional to m n. However, because 
the functionf(gi) involves only the genotype of a founder 
and the function h(gi, gin, gs) involves only the genotypes 
of a non-founder and parents m and f, the order of 
adding and multiplying in Eq. 4 can be rearranged such 
that the number of calculations required to compute the 
likelihood is proportional to n (Elston and Stewart 1971; 
Lange and Elston 1975; Cannings et al. 1976, 1978; 
Lalouel 1980; Lange and Boehnke 1983; Goradia et al. 
1992). 

Now consider the mixed model of inheritance. Sup- 
pose the phenotypic value of an individual can be 
modeled as 

Yi = #u, q- #v i + ei, ( 5 )  

where #u, is the effect of the major locus, #v, is the effect of 
the polygenic loci, and e i is a residual. (More generally, 
#u, can represent the sum of a major locus effect and a set 
of fixed effects for individual i). The effects #vl and ei are 
usually assumed to be normally distributed with null 
means. Further, the e~ are assumed to be identically and 
independently distributed. Under these assumptions, 
the conditional distribution of the phenotypic values, 
given the major genotypes, cannot be written as Eq. 1 
but is 

f - -  tTii t Pr(ylu) oc JZ[ -I/2 f i  exp --~(yi--#u) 2 
i = 1  

x nfl 1 f l  exp{-ai i (yi-#u,)(yj-#.)}  (6) 
i=l  j = i + l  

where Z = Var(ylu), u is a vector of major genotypes, 
and ~r ~ is the ijth element of the inverse of 1~. Thus, the 
likelihood for the mixed model is 

Pr(y) oc E E . . . E  iz[ -1/2 exp - T ( y , -  #,,) z 
u I u z u n i= 1 

X .-xH [I 
i = 1  j = i + l  

e x p { -  o-iJ(y i - #,)(yj - #,)} 

x f i P r ( u i ) f i  Pr(uiJu,,,uf), (7) 
i = 1  i = n ~ + l  

and because Eq. 7 cannot be written as Eq. 4, the order of 
adding and multiplying in Eq. 7 cannot be rearranged 
for efficient calculation of the likelihood (Elston 1990; 
Hasstedt 1991; Bonney 1992). 
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Therefore, consider a mixed model where the 
genotypic value is determined by a major locus and by a 
finite number (k) of unlinked polygenic loci rather than 
by the infinite number of polygenic loci implied by the 
assumption of normality for the polygenic component in 
the usual mixed model. Further, assume that the poly- 
genic component of the genotypic value is additive and 
that the aggregate genotypic value is the sum of the 
genotypic values of the major locus and of the polygenic 
component. 

With this formulation of the mixed model, the condi- 
tional distribution of the phenotypic values, given the 
genotypes determined by the major and polygenic loci, 
can be written as Eq. 2, where g is now the genotype 
determined by both the major and polygenic loci. Thus, 
algorithms applicable to oligogenic traits can be used to 
calculate the likelihood. A problem with this approach, 
however, is that the number of genotypes increases 
exponentially with the number of loci, and so does 
computing time. For example, suppose there are two 
alleles at the major locus and at each ofk polygenic loci. 
Then, the number of genotypes that have to be summed 
over is 3 (k+ 1) 

To reduce the computations in calculating the likeli- 
hood, the following assumptions and definitions are made. 

1) There are only two alleles, a with effect ~ and b with 
effect fl, at each of the k polygenic loci. The fre- 
quency of allele a is p at each locus. 

2) The polygenic effect, #,, is the sum of the effects of 
the alleles at the polygenic loci. Thus, for an indi- 
vidual possessing v alleles with effect ~ and (2k - v) 
alleles with effect fi, 

#~ = vc~ + (2k - v)fl. 

3) 

The number v will be referred to as the polygenic 
number. 
The polygenic number v i of a pedigree member i is 
conditionally independent of the polygenic num- 
ber vj of any ancestor or sib j, given Vm and v:, the 
polygenic numbers of the parents of i. So, the 
probability of the polygenic numbers can be writ- 
ten as 

Pr(v)= fiPr(vi)fl Pr(vilv.,,v:), 
i = l  i = n l + l  

4) 

where v is a vector of polygenic numbers. It is 
shown in Appendix A that this assumption is not 
strictly consistent with Mendelian inheritance. 
However, vi and v: are conditionally uncorrelated 
given v,, and v:, as shown in Appendix B. Recursive 
calculation of transition probabilities, Pr (vii Vm, V:), 
for polygenic numbers is described in Appendix C. 
The effects ~ and fl are such that #~ has expected 

2 Thus, setting value zero and variance G. 

2k  + (1 - p) fl-1 = 0 

and 

2 k [ p ~  2 + ( 1  _ p ) f l 2 ]  _ 2 
- -  O't~ , 

after some algebra, 

and 

f l - l - p "  

Thus, c~ = - fl when p = 0.5. 

From Eq. 5 it can be seen that the phenotypic values 
are conditionally independent, given #u and #v, the 
effects of the genotypes at the major locus and the 
polygenic loci. Thus, under these assumptions, and be- 
cause of the one-to-one correspondence between u i and 
#u: and between V i and #v,, the likelihood can be written 
as 

Pr(y) = E E E E  E E  h Pr(yi[ui, vi) 
U 1 V 1 U 2 1"7 2 U n  /)rl i ~ ]  

n l 

x [IPr(ui)Pr(vi) f l  Pr(uilum, U:) 
i = l  i = n l + l  

x Pr(vilvm, v s) (8) 

which can be rearranged as 

M1 

P r ( y )  = E E E E  EE FI f(u~, v~) 
U l U 1 1/2 U 2 U n  l~n i ~ 1 

h h(ui, vi, urn, v,,, u:, v:) (9) 
i = n l + l  

Further, by assumptions 1 and 2 above, #v can take on 
only one of 2k + 1 values corresponding to the 2k + 1 
polygenic numbers. (In contrast, there are 3 k possible 
genotypes for the polygenic loci). Suppose, for example, 
there are two alleles at the major locus. Then, the 
number of calculations to compute Eq. 8 is equivalent to 
that for computing the likelihood for a monogenic 
model with 3(2k + 1) possible genotypes. 

Comparison of models 

The primary difference between the usual mixed model 
of inheritance (Moo) (Elston and Stewart 1971; Morton 
and MacLean 1974) and that presented here (Mk) is in 
the assumed number of polygenic loci. The assumption 
of a normal distribution for the polygenic value in Mo~ 
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implies an infinite number of polygenic loci, while k 
polygenic loci are assumed in M k. 

As shown in Appendix B, under both M~ and Mk 
Mendelian inheritance implies that the polygenic effect 
of pedigree member i is conditionally uncorrelated with 
those of its sibs and ancestors, given the polygenic effects 
of the parents of i. As polygenic effects are normally 
distributed under M~, the null conditional correlation 
implies that the polygenic effect of i is conditionally 
independent of the polygenic effects of its ancestors and 
sibs, given the polygenic effects of the parents of i. 
However, as polygenic effects do not have a normal 
distribution under Mk, the null conditional covariance 
does not necessarily imply conditional independence. 
The counterexample in Appendix A demonstrates this 
lack of conditional independence of polygenic effects 
between full sibs given the polygenic effects of their 
parents. However, it is assumed for M k that the poly- 
genic effect of i is conditionally independent of the 
polygenic effects of its ancestors and sibs, given the 
polygenic effects of the parents of i, to enable fast 
calculation of likelihoods by the Elston-Stewart algo- 
rithm (Elston and Stewart 1971) and other algorithms 
based on it (Cannings et al. 1978; Lange and Boehnke 
1983; Fernando et al. 1993). 

Another difference between M~ and M k is in the 
conditional variance of the polygenic effect in an off- 
spring given the polygenic effects of the parents. Under  
Moo, this conditional variance is constant in a random 
mating population, regardless of the values of the poly- 
genic effects of the parents. However, under M k this 
conditional variance is lower with extreme polygenic 
values for the parents compared to that when the par- 
ents have intermediate polygenic values. This occurs 
because an extreme value of the polygenic effect implies 
homozygozity at most of the polygenic loci, and in this 
respect M k is a more realistic model than M~o. 

Comparison of likelihood profiles and parameter 
estimates 

Regressive models (Bonney 1984; Bonney 1992) are now 
commonly used for data analysis as an alternative to the 
mixed model. Under  the simplest of the regressive 
models, class A, the likelihood can be written as Eq. 4, 
and so can be calculated very efficiently. However, this is 
often not a good approximation to mixed inheritance 
(Demenais and Bonney 1989; Konigsberg et al. 1989). 
Class D regressive models subsume mixed inheritance as 
a special case when the data consist of only two gener- 
ations, but are somewhat different for multigenerational 
data; they assume that the correlation between the 
components/~,  of Eq. 5 for r'th degree unilineal relatives 
equals the pare~at-offspring correlation raised to the r'th 
power (instead of the parent-offspring correlation times 
(1/2)r-1). This makes computat ion of a large pedigree 
likelihood feasible provided no single sibship is too 
large. Furthermore, it is possible to approximate the 

likelihood of a class D regressive model so that it can be 
written as Eq. 4 (Demenais etal.  1990), which is 
implemented in the program package S.A.G.E. (1992). 
Another approach used to analyze data under mixed 
inheritance is to approximate Eq. 6 such that the likeli- 
hood can be written as Eq. 4 (Hasstedt 1982, 1991). Such 
an approximation has been implemented in the Pedigree 
Analysis Package (PAP; Hasstedt 1989). 

A large sample of data was simulated under M~ to 
compare these approaches. The data consisted of 500 
identical families (Fig. 1) of 12 members each. The major 
locus was simulated to have two additive alleles, c and d,. 
with effects 0 and 10, and a frequency q of 0.5 for each. 
The polygenic value was simulated to have a variance 
(o -2) of five, and the residual was simulated to have a 
variance (o .2 ) of seven. 

For comparison, likelihood profiles (Figs. 2-4) were 
obtained assuming: 

1) a class D regressive model, with exact calculation 
of the likelihood, assuming zero spouse correlation 
and equal sibling and parent-offspring correla- 
tions; 

2) M| with exact calculation of the likelihood; 

Fig. 1 Pedigree of a family. The simulated data consisted of 500 such 
independent families 

Fig. 2 Likelihood profiles for the gene frequency. �9 Class D re- 
gressive model [] M~ �9 M~ with approximate calculation, �9 M k 
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Fig. 3 Likelihood profiles for the mean of major genotype dd �9 
Class D regressive model, [] Moo, �9 M~ with approximate calcula- 
tion, �9 M k 
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of the additive genetic variance, the total variance 
2 (av + a 2) was held fixed. 
In each of the Figs. 2-4, the profile for Mk was closest 

to that for exact M~. The approximate likelihood values 
for M~ from PAP were the highest, and the exact 
likelihood values for the class D regressive model were 
the lowest. The exact likelihood values for Mk were very 
close to, but lower than, the exact values for M~. 

Thus, among the exact likelihood values, that for M~ 
was highest. This is to be expected as the data were 
generated under M~. The likelihood values for M k were 
closer to those for M~ than were those for the class D 
regressive model. This indicates that M k more closely 
resembles M~ than does the class D regressive model. 
The likelihood values from PAP were approximations 
for Moo, but those for M k were closer than the PAP 
values to the exact likelihood values for M~. This 
indicates that the exact likelihood for Mk better approxi- 
mates the likelihood for Moo than does the PAP ap- 
proximation. 

Table 1 shows the maximum likelihood estimates 
obtained by the different approaches. The variance pa- 
rameters a2 and a 2 were obtained for the class D re- 
gressive model by equating the residual variance to 
a 2 + a  2 and the parent-offspring correlation to 

2 2 a~/2(av + (72). PAP provides estimates of (a 2 + 0 -2) and 
the polygenic heritability h } = 0-2(0 .2 + 0-2). By fitting a 
quadratic to the four highest in likelihoods in each 
profile to estimate the second derivative, the standard 
errors in Table 2 were estimated. Both the parameter 
estimates and the standard errors were very similar for 
all of the models compared. It must be remembered that 
except under M~, the true model, the standard error 
estimates may not be consistent. Thus, the small dif- 
ferences in the standard errors should not be interpreted 
as indicating which method of analysis leads to the most 
efficient estimates. 

Additive genetic variance 

Fig. 4 Likelihood profiles for the additive genetic variance, (a~ + 0 -2) 
held constant. O Class D regressive model, [] M~, �9 Moo with 
approximate calculation, �9 M k 

3) Moo with approximate calculation of the likeli- 
hood using PAP (Hassted 1989); and 

4) M k with exact calculation of the likelihood for 
k = 5 and p = 0.5 (gene frequency for the polygenic 
loci). 

Profiles were obtained for the gene frequency at the 
major locus, the mean of the major genotype dd, and for 
the additive genetic variance. Maximization of the exact 
likelihood for Moo was computationally not feasible, 
therefore the profiles for a specific parameter were com- 
puted instead by fixing all other parameters at their 
maximum likelihood estimates under M k for k = 5 and 
varying the parameter under consideration; in the case 

Discussion 

The finite polygenic mixed model (Mk) described here 
has the advantage that its likelihood can be calculated 
using efficient algorithms developed for oligogenic 
models. Similar algorithms (van Arendonk et al. 1989; 
Fernando et al. 1993) can also be used to calculate the 
posterior probabilities of genotypes at the major locus 
and at the polygenic loci. One can thus calculate the 
posterior mean of the aggregate genotypic value, which 
is widely used in animal breeding to make selection 
decisions. Also, compared to the traditional mixed 
model (Moo), Mk has some genetically desirable proper- 
ties such as heterogeneous within-family variances, the 
accommodation (by letting p ~ 0.5) of a non-symmetric 
distribution for the polygenic effect, and the possibility 
of estimating k, the number of polygenic loci involved. 

One possible criticism of M k could be that it assumes 
the polygenic effect of an individual to be conditionally 
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Table 1 Maximum likelihood 
estimates and In likelihoods 

a Ln likelihood for generating 
parameters under Moo 

Parameter  Generating value M k Regular model class D PAP 

q 0.5 0.5114 0.4946 0.5064 
~da 20 19.9884 20.0230 20.0712 
p~ 0 0.0000 --0.0840 - 0.0157 

2 
a~ 5 5.1430 5.2480 5.8674 
~2 7 6.6702 6.6528 6.0861 

2 i f 2  a v +  12 11.8132 11.9008 11.9535 
Lnl ikel ihood -19349 .07  a - 19350.65 -19365 .26  -19333 .65  

Table 2 Standard errors of maximum likelihood estimates 

Parameters M k Regular mo- PAP Moo 
del class D 

q 0.0083 0.0083 0.0083 0.0083 
,uad 0.1158 0.1138 0.1112 0.1123 
a~ 0.3588 0.3010 0.3027 0.3112 

independent of its ancestors and sibs, given the poly- 
genic effects of its parents, which is not consistent with 
Mendelian inheritance. However, it should be remem- 
bered that this assumption, together with the assump- 
tions of homogeneous within-family variances and a 
symmetric distribution for the polygenic effects, is also 
implied under Moo. However, since the number ofloci is 
always finite, none of these assumptions of Moo is con- 
sistent with Mendelian inheritance. Thus, in the analysis 
of data using Mk, one makes fewer assumptions that are 
inconsistent with Mendelian inheritance than when 
using Moo. 

The approximation to the class D regressive model 
implemented in S.A.G.E. (1992) allows fast computation 
of the pedigree likelihood under a model that is close to 
mixed inheritance. However, in the context of sex- 
limited traits, regressive models require further approxi- 
mation to maintain their advantage of computational 
efficiency. 

As presented here, M k does not accommodate non- 
genetic covariances among relatives. Non-genetic 
covariances, however, can be accommodated by assum- 
ing a regressive model in addition to a finite polygenic 
component. The likelihood under such a model can also 
be calculated using algorithms developed for oligogenic 
models. With this approach, one can test if the residual 
covariances, after accounting for the major locus, are 
due to polygenic loci or to non-genetic causes (or both). 

An advantage of using the PAP approximation over 
the use of Mk or regressive models for analyzing data is 
that PAP can accommodate a completely general struc- 
ture for the non-genetic residual covariances. The main 
disadvantage of PAP is that it requires the inversion of a 
covariance matrix of order n where n is at least the 
number of individuals in the pedigree, which can be 
quite large for animal pedigrees. Also, the accuracy of 
the PAP approximation cannot be determined for such 
large pedigrees. 
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Appendix 

A. Counterexample 

This is a counter example to show that under MendeliAn inheritance 
the polygenic numbers of full sibs are not conditionally independent 
given the polygenic numbers of their parents. 

Consider an M k model with k = 2 and 0 < p < 1. Let i and j  be two 
full sibs with parents rn a n d f  From probability theory, the equality 

Pr(vi = 0l Vj : O ,  V m : 2, v f  = 0) = Pr(vi = 01 vj = 1, v m = 2, v f  = O) 

(A.1) 

must be true if polygenic numbers of the sibs, v~ and vj,'are condi- 
tionally independent given polygenic numbers, v,, and vy, of the 
parents. We show below that  Eq. A.1 is not true. 

For  parent f vf  = 0 implies t h a t f h a s  genotype bb at both loci. 
However, for parent m, v,. = 2 implies that  m has either genotype ab at 
both loci or aa at one locus and bb at the other. Also, i f fhas  genotype 
bb at both loci and m is heterozygous at both loci Pr(vl = 0) = 0.25. On 
the other hand, iffis as before and m has genotype aa at one locus and 
bb at the other, Pr(Vl = 0) = 0. 

But, if V j  ~ 0, m cannot  have genotype aa at either of the loci and 
must be heterozygous at both loci. Thus, it is easy to see that  the first 
probability in Eq. A.1 must be equal to 0.25. However, i f v j  = 1, there 
is a non-zero probabili ty that  m has genotype aa at one locus and bb at 
the other. Thus, the second probability in Eq. A.1 is a weighted sum of 
0.25 and 0, and is less than 0.25. Thus Eq. A.1 is not true. 

B. Conditional correlation with ancestors or sibs 

It is shown here that Mendelian inheritance implies that  the polygenic 
number  v i of a pedigree member i is conditionally uncorrelated with 
the polygenic number  vj of any ancestor or sib j, given the polygenic 
numbers v,, ~nd vf  of the parents of i. Because of the linear relation- 
ship between polygenic number  and polygenic effect, the conditional 
correlation of polygenic effects is identical to that  of polygenic 
numbers. To show that  the above conditional correlation is null, it is 
sufficient to show that the conditional covariance, Cov(v, vii Vm, V f), is 
null. This conditional covariance can be written as 

Cov(v~,v~tv,.,vl)= E[Cov(vl, vilv m, v~, gm,P gl)]P 
P P P P + Cov [E (vi, Iv,., v f ,  gin, gf) '  E(vjl Vm' V f ,  gin, g f ) ]  

(B.1) 



where 9~ and g} are genotypes of the parents that result in (or map to) 
polygenic numbers v,, and v:. The outer expectation and covariance 
are taken over all such genotypes, and the inner covariance and 
expectations are over restricted ranges of vi and v t From principles of 
Mendelian inheritance, it is easy to see that the conditional expecta- 
tion E(v~k v,,, v f ,  g~, 9Py) is a constant for all genotypes g~ and g~ that 
result in (or map to) v,. and v:. Thus, the covariance of the conditional 
expectations in Eq. B.1 is null, and Eq. B.1 can be written as 

v:, gin, @)] .  Cov(vi, vjlv",v:)=E[Cov(vi, vjlVm, P (B.2) 

But the conditional covariance in Eq. B.2 is null for all genotypes of 
the parents, 0~ and 9}, because given these genotypes of the parents, 
the genotypes Of and gf are independent, and the polygenic numbers 
v~ and v: are functions of the genotypes g~ and g~- It follows that the 
expecte~t value of the conditional covariance in Eq. B.2 is null. 

C. Recursive calculation of transition probabilities 
for polygenic number 

Let x denote the polygenic number for loci 1 .... , t, i.e., the number of a 
alleles at the first t polygenic loci. The polygenic number for the single 
locus t + 1, denoted w, can take on one of three values 0, 1, or 2, 
corresponding to genotypes bb, ab, and aa. Thus, because there is a 
one-to-one correspondence between the polygenic number for one 
locus and the genotype at that locus, the transition probabilities for w 
are identical to the genotype transition probabilities for a locus with 
two alleles. 

Suppose the transition probabilities for x are known. It is shown 
here how to compute transition probabilities for z = x + w, the 
polygenic number for loci 1 .. . .  , t + 1, from the transition probabili- 
ties for x and w. 

Reasoning entirely from probability theory, the transition prob- 
abilities for z can be written as 

Pr(zo l z , . , z : )  = ~, ~,  
W., Wf Wo 

Pr(zolWo, Wm, Wf, X , . , x f ,  z , , z : )  

Pr(wolwm, W : , X , , , x : , z , , , z : )  

Pr(wm, wf,  x,., x : l z , , ,  zy)  (C,1) 

where o, m, a n d f  denote offspring, mother, and father, respectively, 
and x,, = z,, - w,, and x :  = z :  - w:.  The first probability in Eq. C.1 
can be written as 

Pr(zolwo, w , , , w : , x , , , x : , z , , , z f ) = P r ( x o = z o - w o l x m ,  x:)  (C.2) 

because z o = x o + w o, x o is independent Of Wo, w,., and w f ,  and given xm 
and x: ,  xo is also independent of z,. and z:. The second probability in 
Eq. C.1 can be written as 

Pr(wo L w,,, w f ,  x,,, x f ,  z,,, z f)  = Pr(wo ]Win, W : )  (C.3) 

because Wo is independent of x,. and x: ,  and given w,, and w:,  w o is 
also independent of z,, and z: .  Assuming that the parents m and f a r e  
unrelated, the third probability in Eq. C.1 can be written as 

Pr (w,., w f ,  x,~, x f  I z,., z:)  = Pr  (x, . ,  w,~ ] z,.) Pr (x:,  w:] z:)  (C.4) 

Subtituting Eqs. C.2, C.3, and C,4 in C.1, the transition probabilities 
for z can be written as 

Wm W: Wo 

Pr(xo = zo - Wo Ix,., x : )  Pr(w o [w", w:) 

Pr(xm, w,~lz,,) P r ( x f ,  w f l z f )  (c.5) 
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The first two probabilities in Eq. C.5 are transition probabilities for x 
and w, respectively. To calculate the third and fourth probabilities in 
Eq. C.5 note that x and w are independent binomial variables and that 
z = x + w. From this it follows that 

Pr(x, wlz)  = Bin2t'P(X)Bin2'p(W) (C.6) 
Igi+j--Bin2tw(i) Binz.p(j) 

for x + w = z, and Pr(x, wlz)  = 0 otherwise, where Binq.p0 stands for 
the binomial probability function with parameters q and p. The 
summation in the denominator of Eq. C.6 is over all values of i andj  
such that i + j  = z for integers i between 0 and 2t and integers j 
between 0 and 2. 
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